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Abstract. We calculate the damping γq of collective density oscillations (zero sound) in a one-dimensional
Fermi gas with dimensionless forward scattering interaction F and quadratic energy dispersion k2/2m at
zero temperature. Using standard many-body perturbation theory, we obtain γq from the expansion of the
inverse irreducible polarization to first order in the effective screened (RPA) interaction. For wave-vectors
|q|/kF � F (where kF = mvF is the Fermi wave-vector) we find to leading order γq ∝ |q|3/(vF m2). On the
other hand, for F � |q|/kF most of the spectral weight is carried by the particle-hole continuum, which is
distributed over a frequency interval of the order of q2/m. We also show that zero sound damping leads to
a finite maximum proportional to |k− kF |−2+2η of the charge peak in the single-particle spectral function,
where η is the anomalous dimension. Our prediction agrees with photoemission data for the blue bronze
K0.3MoO3. We comment on other recent calculations of γq.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
71.10.-w Theories and models of many-electron systems

1 Introduction

The normal metallic state of interacting electrons in one
spatial dimension has rather exotic properties, which are
summarized under the name Luttinger liquid behavior:
the absence of a discontinuity in the momentum distribu-
tion function at the Fermi surface, a vanishing density of
states at the Fermi energy, and an unusual line-shape of
the single-particle spectral function, characterized by alge-
braic singularities and separate peaks for spin- and charge
excitations [1,2]. To discover these features und study
them quantitatively, it has been extremely useful to have
an exactly solvable effective low energy model for interact-
ing one-dimensional clean metals, the so-called Tomonaga-
Luttinger model (TLM) [3,4]. The exact solubility of the
TLM relies on two crucial assumptions: the linearization of
the energy dispersion for momenta close to the two Fermi
momenta ±kF , and the restriction to two-body scattering
processes involving only momentum transfers small com-
pared with kF (forward scattering). The single-particle
Green function is then most conveniently obtained via
bosonization [1,2]. Alternatively, the Ward identity associ-
ated with the separate number conservation at each Fermi
point can be used to derive a closed equation for the single-
particle Green function [5]. Within the Ward-identity ap-
proach, it is also straightforward to show that collec-
tive density oscillations can propagate without damping
in the TLM, so that the random-phase approximation
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(RPA) for the density-density correlation function Π(q, ω)
is exact. As a consequence the dynamic structure factor
S(q, ω) = π−1ImΠ(q, ω + i0) of the TLM exhibits a sharp
δ-function peak. Focusing for simplicity on the spinless
TLM with forward scattering interactions g2 = g4 = f0 in
“g-ology”-notation [1,2], the dynamic structure factor is

STLM(q, ω) = Zqδ(ω − ωq), (1)

where Zq = |q|/(2π
√

1 + F ) and ωq = vc|q|. Here
F = f0/(πvF ) is the relevant dimensionless interaction,
vc = vF

√
1 + F is the velocity of the collective charge

excitations (zero sound, abbreviated by ZS from now on),
and vF is the Fermi velocity.

The simple result (1) is a consequence of the approx-
imations inherent in the definition of the TLM: the lin-
earization of the energy dispersion and the restriction to
forward scattering interactions. In more realistic models,
we expect that the ZS mode acquires a finite width. How
does the line-shape of S(q, ω) change if we do not lin-
earize the energy dispersion? Since the RPA is exact for
linear energy dispersion, it is reasonable to use the RPA
as a starting point for quadratic dispersion and to try to
calculate the corrections to the RPA perturbatively. At
the first sight it seems that this problem can be solved
within the usual bosonization approach by treating the
effective boson-interactions due to the band curvature
within conventional many-body perturbation theory for
the bosonized problem [1,6,7]. However, for frequencies
close to ωq this seems not to be possible, and infinite
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re-summations are necessary [8,9]. In fact, there are con-
flicting results for the q-dependence of the damping γq of
the ZS mode of one-dimensional fermions in the literature:
while Capurro et al. [10] found γq ∝ q3, Samokhin [11],
Pustilnik and co-authors [12–14] and Pereira et al. [15]
obtained γq ∝ q2. On the other hand, Teber [16] recently
showed that the attenuation rate of an acoustic mode em-
bedded in the two-pair continuum of the dynamic struc-
ture factor scales as q3, which is consistent with γq ∝ q3.

Let us briefly discuss the recent works by Pustilnik
et al. [13,14] and by Pereira et al. [15], both of which
found that the damping scales as q2. In reference [15] it
has been shown that the width γq of the peak of the lon-
gitudinal structure factor of the XXZ spin-chain is pro-
portional to q2. This is not necessarily in conflict with
γq ∝ q3 for the TLM with band curvature, because the
XXZ-chain is equivalent to a system of spinless fermions
on a lattice. In contrast to the forward scattering pro-
cesses of the TLM, the interaction in this model has also
scattering processes involving momentum transfers of the
order of kF . Although in the Luttinger liquid regime of the
XXZ-chain these processes are irrelevant in the renormal-
ization group sense, their effect on non-universal quanti-
ties like γq might be essential. A similar argument applies
also to reference [14], where the dynamic structure fac-
tor of the Calogero-Sutherland model is shown to differ
from zero only in a finite interval of frequencies of the
width proportional to q2/m. The Fourier transform fq of
the interaction in the Calogero-Sutherland model is pro-
portional to |q|/m for all momentum transfers q, so that
scattering is suppressed for small q. On the other hand,
the RPA and our strategy of calculating perturbative cor-
rections to the RPA can only be expected to be accurate
if the interaction fq is strongest for small q. We therefore
believe that the dynamic structure factor of the Calogero-
Sutherland model [14] does not represent the generic be-
havior of the dynamic structure factor of one-dimensional
Fermi systems with dominant forward scattering, as given
by the TLM with curvature.

As far as the calculation in reference [13] is concerned,
it is based on an infinite re-summation of the apparent
leading singularities in the weak coupling expansion, us-
ing an analogy with the X-ray problem. We believe that
this procedure does not properly take into account the
asymptotic Ward-identity which guarantees the cancella-
tion of all singularities in the limit 1/m → 0. Moreover,
the renormalization of the real part of the energy of the
ZS mode, which might be essential to obtain the correct
damping [17,18], has not been properly taken into account
in reference [13].

Within the framework of diagrammatic many-body
perturbation theory, the standard approach [19] to cal-
culate corrections to the RPA is based on the evaluation
of the three Feynman diagrams shown in Figure 1, which
represent the leading corrections to the irreducible polar-
ization in an expansion in powers of the RPA interaction.
Surprisingly, these diagrams have never been evaluated for
the TLM with band curvature, which we shall do in this
work. It seems that, at least for small interactions, this

(a) (b) (c)

+ +

Fig. 1. Leading interaction corrections to the irreducible polar-
ization in an expansion in powers of the RPA interaction. Solid
arrows are non-interacting Green functions and wavy lines de-
note the RPA interaction.

approach should be sufficient to estimate the damping of
the ZS mode. We shall further comment on the accuracy
of this approach in Section 4.

2 RPA in one dimension with quadratic
dispersion

It is instructive to consider first the density-density corre-
lation function for fermions with quadratic energy disper-
sion εk = k2/2m within the RPA, where

Π−1
RPA(Q) = f0 + Π−1

0 (Q). (2)

For convenience we use the Matsubara formalism and col-
lective labels Q = (iω, q) for wave-vector q and bosonic
Matsubara frequency iω. To make contact with the
usual distinction between left-moving and right-moving
fermions in the TLM, we write the non-interacting polar-
ization as Π0(Q) =

∑
α=± Πα

0 (Q), where α = + refers
to right-moving fermions (with velocity vk = k/m > 0)
while α = − denotes left-moving fermions (vk < 0). At
finite temperature T for a system of length L,

Πα
0 (Q) = −T

L

∑

K

Θα(k)Gα
0 (K)Gα

0 (K + Q), (3)

where Gα
0 (K) = [iω̃ − ξα

k ]−1 is the free Matsubara Green
function and ξα

k = εαkF +k − εkF = αvF k + k2/2m is
the free excitation energy. The label K = (iω̃, k) consists
of fermionic Matsubara frequency iω̃ and momentum k,
which is measured relative to αkF . The cutoff function
Θ+(k) restricts the range of the k-integration to the inter-
val [−kF ,∞) associated with right-moving fermions, while
Θ−(k) selects the interval (−∞, kF ] corresponding to left-
moving fermions. All degrees of freedom are taken into
account in this way. At T = 0 the integrations in equa-
tion (3) are easily carried out,

Πα
0 (Q) = α

m

2πq
ln

[
αvF q − iω + q2/2m

αvF q − iω − q2/2m

]

, (4)

so that dynamic structure factor SRPA(q, ω) =
π−1ImΠRPA(q, ω + i0) can be calculated analytically. For
any finite value of the interaction SRPA(q, ω) consists of
two contributions: a continuum part due to partice-hole
excitations, and a sharp δ-peak Szs

RPA(q, ω) = Zqδ(ω−ωq)
corresponding to the undamped collective ZS mode, see
Figure 2. The weight Zq and the dispersion ωq of the ZS
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Fig. 2. RPA dynamic structure factor for quadratic energy
dispersion, |q|/kF = 0.1, and different values of the dimen-
sionless interaction F . The arrows denote the location of the
δ-peak associated with the ZS mode, the length of the arrows
being proportional to the relative weight Wq of the ZS peak in
the f -sum rule, see equation (5).

mode are within RPA

Zq =
vF q2

2πωq
Wq, Wq = (q̃/F )2/ sinh2(q̃/F ), (5)

ωq = vF |q|[1 + q̃ coth (q̃/F ) + (q̃/2F )2]1/2, (6)

where q̃ = q/kF . Obviously, the limits of vanishing band
curvature (|q̃| = |q|/mvF → 0) and vanishing interaction
(F → 0) do not commute: for |q̃| � F the weight Zq of the
ZS mode is exponentially small, so that the particle-hole
part of the dynamic structure is dominant. For F → 0 the
latter approaches a box-function centered at ω = vF |q|
of width q2/m and height m/(2π|q|), see Figure 2. In the
opposite limit |q̃| � F the ZS peak is dominant. To quan-
tify this, note that the dimensionless factor Wq defined in
equation (5) can be identified with the relative weight of
the ZS peak in the f -sum rule

∫ ∞
0 dω ω S(q, ω) = vF q2/2π.

From Figure 3 it is clear that for |q̃| � F the contribution
of the particle-hole continuum to the f -sum rule is indeed
negligible (actually, it is of order (q̃/F )2 � 1), and that
the crossover between the particle-hole regime |q̃| � F
and the ZS regime |q̃| � F occurs at |q̃| ≈ F .

The line-shape of the particle-hole continuum and its
position relative to the ZS mode are probably not correct
within the RPA. In fact, recently Schönhammer [17] has
shown that if one uses in the RPA bubbles Hartree-Fock
propagators instead of bare ones, then the energy of the
ZS mode is smaller than the energy of the particle-hole
continuum. Moreover, multi-pair particle-hole excitations
neglected within the RPA will wash out the sharp thresh-
olds predicted by the RPA and generate some small spec-
tral weight for all frequencies [20]. However, for sufficiently
small q almost the entire spectral weight is carried by the
ZS mode, so that in this limit we may neglect the particle-
hole continuum.

3 Leading correction to the RPA

Because for |q|/kF � F the spectrum of the density
fluctuations is dominated by the collective ZS mode, we
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Fig. 3. Weight Wq of the ZS mode in the f -sum rule in RPA for
q/kF = 0.1 (dashed line) as a function of F , see equation (5).

expect that the exact structure factor for frequencies ω
close to the exact ZS frequency ωq can be approximated
by a Lorentzian,

S(q, ω) ≈ π−1Zqγq[(ω − ωq)2 + γ2
q ]−1. (7)

In terms of the irreducible polarization Π∗(Q) defined via
Π−1(Q) = f0 +Π−1∗ (Q) the inverse weight of the ZS peak
is given by

Z−1
q = f2

0 ReΠ ′
∗(q, ωq), (8)

and the damping is

γq = ImΠ∗(q, ωq + i0)/ReΠ ′
∗(q, ωq), (9)

where Π ′∗(q, ω) = ∂Π∗(q, ω)/∂ω.
Since γq = 0 within RPA, we need to go beyond RPA

to estimate γq. This is usually done [19] by expanding the
Π∗(Q) in powers of the RPA interaction fRPA(Q) = f0[1+
f0Π0(Q)]−1. Before presenting an explicit calculation, let
us give a simple argument for the expected q-dependence
of γq. Within the functional bosonization approach [7],
Πα(Q) can be written as a single-particle Green function
of a real bosonic quantum field ρα

Q representing the density
fluctuations,

Πα(Q) ∝
∫

D[ρα]e−Seff [ρ
α]ρα

−Qρα
Q. (10)

For linear dispersion the effective action Seff [ρα] is
quadratic, so that equation (10) yields the RPA result,
which is exact for the TLM. Non-linear terms in the en-
ergy dispersion renormalize the quadratic part of Seff [ρα]
and give rise to cubic, quartic, and higher order re-
tarded interaction vertices [7], which all generate correc-
tions to the RPA. We parameterize these corrections in
terms of an irreducible self-energy Σα(Q). Assuming that
Σα(Q) is analytic for small Q (this assumption relies on
the cancellation of all singularities in the symmetrized
closed fermion loops [18]), and taking into account that
Σα(Q) = Σα(−Q) (which follows from the invariance
of the right-hand side of Eq. (10) under Q → −Q), we
conclude that Σα(q, ωq + i0) = c0 + c2(q/kF )2 + O(q4),
with real c0 and complex c2. But the relation between
the density fields ρα

Q and the Tomonaga-Luttinger bosons
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whose damping γq we are seeking involves an extra factor
of |q|1/2 (see for example p. 57 of Ref. [7]), so that we
expect γq ∝ |q|ImΣα(q, ωq + i0) ∝ |q|3.

We now confirm this result by explicitly calculating
Σα(Q) to first order in the RPA interaction. The di-
agrams contributing to Π∗(Q) to this order are shown
in Figure 1. Writing again Π∗(Q) =

∑
α Πα

∗ (Q) we
have Πα∗ (Q) ≈ Πα

0 (Q) + Πα
1 (Q), with Πα

1 (Q) = Πα
1s(Q)+

Πα
1v(Q). The sum of the self-energy corrections shown in

Figures 1a, 1b is

Πα
1s(Q) =

T 2

L2

∑

K,Q′
Θα(k)fRPA(Q′)[Gα

0 (K)]2

× Gα
0 (K + Q′)[Gα

0 (K + Q) + Gα
0 (K − Q)], (11)

and the vertex correction in Figure 1c is

Πα
1v(Q) =

T 2

L2

∑

K,Q′
Θα(k)fRPA(Q′)Gα

0 (K)Gα
0 (K + Q)

× Gα
0 (K + Q′)Gα

0 (K + Q + Q′). (12)

To regularize some of the q′-integrations, we introduce a
momentum transfer cutoff qc � kF which restricts the
integration range to |q′| ≤ qc. The imaginary part of
these expressions is not sensitive to qc. To evaluate equa-
tions (11, 12) in the limit T → 0 it is convenient to write [7]

fRPA(q, iω) = f0 − f2
0

∫ ∞

0

dω′ 2ω′SRPA(q, ω′)
ω′ 2 + ω2

. (13)

The frequency integrations in equations (11) and (12) can
then be carried out exactly. The result is

Πα
1s(q, iω) =

f0

L2

∑

k,q′
Θα(k)θ(−ξα

k+q′ )

×
[

δ(ξα
k )

ξα
k+q − iω

+
sgn(ξα

k )θ(−ξα
k ξα

k+q)
[ξα

k − ξα
k+q + iω]2

]

− f2
0

L2

∑

k,q′
Θα(k)

∞∫

0

dω′
{

SRPA(q′, ω′)
ξα
k − ξα

k+q + iω

×
[ sgn(ξα

k+q′ )δ(ξα
k )

|ξα
k+q′ | + ω′ +

sgn(ξα
k )θ(−ξα

k ξα
k+q′ )

[|ξα
k | + |ξα

k+q′ | + ω′]2

]

+
SRPA(q′, ω′)

[ξα
k − ξα

k+q + iω]2

[
θ(−ξα

k ξα
k+q′ )

|ξα
k | + |ξα

k+q′ | + ω′

− θ(−ξα
k+qξ

α
k+q′ )

|ξα
k+q| + |ξα

k+q′ | + ω′ + iω sgn(ξα
k+q′ )

]}

+ [(q, iω) → (−q,−iω)], (14)

Πα
1v(q, iω) = − f0

L2

∑

k,q′
Θα(k)

× θ(−ξα
k+q′ )sgn(ξα

k )θ(−ξα
k ξα

k+q)
[ξα

k+q′ − ξα
k+q+q′ + iω][ξα

k − ξα
k+q + iω]

+
f2
0

L2

∑

k,q′
Θα(k)

∞∫

0

dω′

× SRPA(q′, ω′)
[ξα

k − ξα
k+q + iω][ξα

k+q′ − ξα
k+q′+q + iω]

×
[

θ(−ξα
k ξα

k+q′ )
|ξα

k | + |ξα
k+q′ | + ω′

− θ(−ξα
k+qξ

α
k+q′ )

|ξα
k+q | + |ξα

k+q′ | + ω′ + iω sgn(ξα
k+q′ )

]

+ [(q, iω) → (−q,−iω)] . (15)

For linearized dispersion, ξα
k ≈ αvF k, we have verified

that Πα
1s(q, iω) + Πα

1v(q, iω) = 0, in agreement with the
closed loop theorem [5,7]. With quadratic dispersion ξα

k =
αvF k + k2/2m this cancellation is not perfect. Assum-
ing that the band curvature 1/m is small, we may ap-
proximate SRPA(q, ω) ≈ SRPA(q, ω)|1/m=0 = STLM(q, ω)
in equations (14) and (15), because the m-dependence
of SRPA(q, ω) is irrelevant for the cancellation between
self-energy and vertex corrections in the limit 1/m → 0.
One should keep in mind, however, that this is only a
good approximation as long as the dynamic structure fac-
tor is dominated by the ZS mode, which is the case for
|q|/kF � F . We shall from now on focus on this regime.
With STLM(q, ω) given in equation (1), the frequency in-
tegration is trivial. However, the resulting expression is ill-
defined, because ImΠα

1 (q, ω + i0) contains singular terms
proportional to δ(ω − ξα

q ). The fact that the direct ex-
pansion of Π∗(q, ω) in powers of the interaction gener-
ates unphysical singularities has been noticed long time
ago [19]. These singularities can be avoided by expanding
the inverse polarization [Πα

∗ (Q)]−1 in powers of the inter-
action, [Πα

∗ (Q)]−1 = [Πα
0 (Q)]−1 − Σα

1 (Q), where to first
order in the RPA interaction Σα

1 (Q) = [Πα
0 (Q)]−2Πα

1 (Q),
with Πα

1 (Q) = Πα
1s(Q) + Πα

1v(Q) given in equations (11)
and (12). The point is that according to equation (10)
Πα(Q) can be viewed as a bosonic single-particle Green
function, which should never be calculated directly, be-
cause its expansion in powers of the interaction usually
contains unphysical singularities associated with the free
Green function. On the other hand, the expansion of the
inverse Green function (i.e., the self-energy) is expected to
be regular. Ignoring the renormalization of the real part
of the ZS dispersion, we approximate

γq ≈ ImΣ
αq

1 (q, ωq + i0)[Παq

0 (q, ωq)]2/Π ′
0(q, ωq), (16)

where αq = sgn(q). For simplicity we consider only the
leading behavior of γq in an expansion in powers of q and
1/m. The integrations over the momenta k and q′ in equa-
tions (14) and (15) can then be carried out exactly. For
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Fig. 4. Dynamic structure factor in Lorentzian approximation
for F = 1, see equations (5–7) and (17).

|q|/kF � min{F, 1} we obtain the expected result

γq ≈ π

8
F 3

√
1 + F [1 +

√
1 + F ]4

|q|3
vF m2

. (17)

An intensity plot of the corresponding structure factor (7)
in Lorentzian approximation is shown in Figure 4.

Our result agrees qualitatively with reference [10],
which found γq ∝ F |q|3/vF m2, but we disagree with ref-
erences [11,12], who obtained γq ∝ q2/m. Possibly the
discrepancy with equation (17) is related to the non-
commutativity of the limits q → 0 and F → 0, which
is obvious from equations (5) and (6). Our result γq ∝ q3

is valid for |q|/kF � F , which for fixed |q| requires a min-
imum strength F of the interaction, but for fixed F > 0
is always satisfied for sufficiently small q. In the opposite
limit F � |q|/kF , where most of the spectral weight is
carried by single particle-hole excitations, our approach
also yields γq ∝ q2/m. The q3-scaling of γq is consistent
with a recent result by Teber [16], who showed that the
attenuation rate of a coherent acoustic mode embedded in
the two-pair excitation continuum scales as q3.

S(q, ω) can be measured using X-ray scattering. Un-
fortunately, for small q the intensity is very low, so that an
experimental verification of Figure 4 seems to be difficult.
However, the ZS damping has a dramatic effect on the
shape of the single-particle spectral function A(kF + q, ω)
for ω ≈ ωq, which can be measured via photoemission.
For the TLM (including now the spin degree of freedom)
one finds for ω → ωq = vc|q| an algebraic singularity [21],
A(kF + q, ω) ∝ |q(ω − ωq)|(η−1)/2, which is a consequence
of the undamped ZS propagation. Here η is the anomalous
dimension. The damping of the ZS mode washes out this
singularity. The sensitivity of the spectral line-shape for
ω ≈ ωq to non-universal perturbations neglected in the
TLM has previously been noticed by Meden [22]. In fact,
from the expression for the single-particle Green function
derived via functional bosonization [6,7] we estimate that
the photoemission intensity exhibits for |ω − ωq| � γq a
finite [23] maximum, Imax(q) ∝ |qγq|(η−1)/2 ∝ |q|−2+2η. In
Figure 5 we compare this prediction with photoemission
data [24] for the “blue bronze” K0.3MoO3. The resulting
value of η is consistent with previous estimates [24] be-
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Fig. 5. Maximum intensity Imax(q) of the charge peak in the
photoemission spectrum of the quasi one-dimensional metal
K0.3MoO3. The points are data from Figure 8 of reference [24],
assuming that q = 0 corresponds to an emission angle θ = 7◦.
The lines are fits to Imax(q) ∝ |q|−2+2η . Our theory is valid only
for |q| � kF , which might explain the discrepancy between
positive and negative q for larger |q|.

tween 0.7 and 0.9 for this material. However, the data [24]
were taken at T = 300 K, so that deviations from our
T = 0 theory are expected [23]. Refined photoemission
data probing the T = 0 regime of a Luttinger liquid would
be useful.

4 Summary and conclusions

In summary, using a standard diagrammatic approach we
have calculated the damping γq of the collective charge
mode (zero sound) in a Luttinger liquid due to the
non-linearity in the energy dispersion. Our result γq ∝
|q|3/vF m2 suggests that ZS is indeed a well defined ele-
mentary excitation in a Luttinger liquid. We have pointed
out that the photoemission line-shape close to the charge
peak is very sensitive to the ZS damping and have made a
prediction for the height of the charge peak which agrees
with experiment [24]. ZS damping is also crucial to under-
stand Coulomb drag experiments in quantum wires [12].

We emphasize that our result is based on the ex-
pansion of the inverse irreducible polarization to first
order in the RPA interaction, using standard many-
body perturbation theory. For Fermi systems in three
dimensions this approach has been quite successful [19],
and we have shown here that also in one dimension the
perturbative calculation of the ZS damping does not
give rise to any singularities, at least to first order in an
expansion in powers of the RPA interaction. However,
according to reference [13] higher order corrections in
the bare interaction (not contained in our expansion
to first order in the RPA interaction) generate new
singularities which, when properly re-summed, lead to
a much larger damping, γq ∝ q2/m. We suspect that
the re-summation procedure proposed in reference [13] is
unreliable, because it does not properly take into account
the closed loop theorem [5,7]. We are currently investi-
gating this problem using a functional renormalization
group approach [18,25] with momentum transfer cutoff,
where corrections to the RPA can be calculated system-
atically even in the presence of infrared singularities.
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Finally, let us emphasize that, in contrast to expan-
sions using conventional bosonization [8,9,11], our ap-
proach is not based on a direct expansion of the dy-
namic structure factor in powers of 1/m. This is obvious
from the fact that in the non-interacting limit we recover
the exact dynamic structure factor of the free Fermi gas
with quadratic energy dispersion. Our approach can be
formally justified with the help of functional bosoniza-
tion [7,18], where the vertices of the effective bosonized
theory are given by symmetrized closed fermion loops and
the effective small parameter which controls a perturba-
tive expansion is proportional to the combination Fqc/kF ,
where the range qc of the interaction in momentum space
must be small compared with kF = mvF .

We thank I. Affleck, V. Meden, K. Schönhammer and S. Teber
for discussions, and R. Claessen and G.-H. Gweon for their
comments about photoemission experiments.
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